Coping with Time Scales in Disease Systems Analysis: Application to Bone Remodeling

Stephan Schmidt, Ph.D.

PAGE 2011 Meeting, Athens, June 10, 2011

Bone Remodeling

- Bone remodeling is accomplished by groups of:
 - bone forming cells (osteoblasts) and
 - bone removing cells (osteoclasts)
- Bone turnover = ratio between bone formation and bone removal
- Interaction between osteoblasts and osteoclasts is highly regulated
 → temporally and spatially coordinated process
- **Disturbances in regulation** of the osteoblast-osteoclast interaction can result in pathophysiological conditions, such as osteoporosis

What Are the Challenges?

Peterson and Riggs (2010) Bone 46:49-63.

What Are the Challenges?

Understanding the Critical Processes & their Relative Speeds

One hour corresponds to the time taken by a pointer to move 1/12th of the perimeter ...

Is the speed of the pointer directly linked to the behaviour of each individual cogged wheel?

The Bone Cell Interaction Model by Lemaire *et al.*

R: responding osteoblasts, *B*: active osteoblasts, *C*: active osteoclasts, *RANK*: receptor activator of NF-κB, *RANKL*: RANK ligand, *OPG*: osteoprotegerin, *PTH*: parathyroid hormone, *TGF-β*: transforming growth factor β , π_c : TGF- β receptor occupancy, π_L : RANK occupancy

Adapted from: Lemaire et al. (2004) J Theor Biol 229:293-309.

How to Determine the Critical Components of the System?

To identify the characteristic properties of the Lemaire model, it is important to assess:

- 1) The relative importance of the individual model terms
- 2) The relative speed/time scales of the processes involved

Dimensionless analysis:

An approach to compare 2 models by evaluating their time scales and dynamics on a common basis

 \rightarrow creation of a reference system

What Should Be Used as Reference Concentration?

Baseline Concentrations of responding osteoblasts (R_0), active osteoblasts (B_0), and active osteoclasts (C_0):

What Are the Relationships within the System?

At baseline:
$$x = \frac{R}{R_0} = 1$$
, $y = \frac{B}{B_0} = 1$, $z = \frac{C}{C_0} = 1$

Assumption: system is at steady-state at baseline

Selection of a Characteristic Time Scale

Elimination of active osteoblasts (y) is given by k_B :

$$\frac{dy}{dt} = k_B \left(\frac{x}{\sigma(z)} - y \right) \implies t_{\frac{1}{2}} = \frac{\ln(2)}{k_B}$$

This suggests a characteristic time scale (T):

$$T = \frac{1}{k_B} \implies \tau = \frac{t}{T} = k_B t$$

How to Determine the Relative Speeds within the System?

$$\begin{cases} \varepsilon \frac{dx}{d\tau} = \sigma(z) - \frac{x}{\sigma(z)} & \qquad \varepsilon \neq \frac{k_B}{D_B} \pi_z(1) \\ \frac{dy}{d\tau} = \frac{x}{\sigma(z)} - y & \qquad \text{and} \\ \frac{dz}{d\tau} = \frac{\mu}{1 + \beta R_0 x} y - \sigma(z)z \end{pmatrix} & \qquad \mu \neq \frac{D_A}{k_B} \pi_z(1) \end{cases}$$

For the parameter values provided by Lemaire *et al.*: $\varepsilon \ll 1 < \mu$ \rightarrow equation for x(T) is fast relative to y(T) and z(T)

Adapted from: Lemaire et al. (2004) J Theor Biol 229:293-309.

The Reduced System

Reduced System

HARMA

가

Original Variables

$$0 = \sigma(z) - \frac{x}{\sigma(z)} \qquad 0 = D_R \pi_C(C) - \frac{D_B}{\pi_C(C)} R$$

$$\Rightarrow x = \sigma^2(z) \qquad \Rightarrow R(C) = \left(\frac{D_R}{D_B}\right) \pi_C^2(C)$$

$$\left\{ \frac{dy}{d\tau} = \sigma(z) - y \qquad \qquad \left\{ \frac{dB}{dt} = D_R \pi_C(C) - k_B B \right\} \\ \frac{dz}{d\tau} = \mu \left(\frac{1 + \beta R_0}{1 + \beta R_0 \sigma^2(z)} y - \sigma(z) z \right) \qquad \left\{ \frac{dC}{dt} = D_C \pi_L \left(R(C), B \right) - D_A \pi_C(C) C \right\}$$

Evaluation of Model Behavior

Performance of the full Lemaire model and the reduced model were evaluated in simulations using physiologically meaningful scenarios:

1) Estrogen deficiency/Estrogen replacement therapy

- 2) Vitamin D deficiency
- 3) Ageing

4) Glucocorticoid treatment (chronic)/treatment cessation

Parameter values (normal & diseased) provided by Lemaire *et al.* were used for simulations

Estrogen Deficiency

R: responding osteoblasts, *B*: active osteoblasts, *C*: active osteoclasts, *RANK*: receptor activator of NF-κB, *RANKL*: RANK ligand, *OPG*: osteoprotegerin, *PTH*: parathyroid hormone, *TGF-β*: transforming growth factor β , π_L : RANK occupancy, K_0^P : OPG production rate

Adapted from: Lemaire et al. (2004) J Theor Biol 229:293-309.

Step-Decrease in Estrogen Production

Responding osteoblasts, active osteoblasts, active osteoclasts. Solid lines: full model, dashed lines: reduced model, black arrow: duration of deficiency.

Physiological Change in Estrogen Production

Responding osteoblasts (R), active osteoblasts (B), active osteoclasts (C). Solid lines: full model, dashed lines: reduced model.

Clarke and Khosla (2010) Arch Biochem Biophys 503(1):118-28. Lemaire et al. (2004) J Theor Biol 229:293-309.

Estrogen Replacement Therapy

Change in responding osteoblasts (R), active osteoblasts (B), active osteoclasts (C) (I) prior to, (II) during, and (III) following estrogen replacement therapy. Solid lines: full model, dashed lines: reduced model, black arrow: treatment duration (4 years).

Summary

- The full Lemaire model was mathematically reduced to a simpler, two-dimensional system
- Negligible differences in the dynamic properties of both models on the time scale of disease progression and therapeutic intervention
- Reduction to a two-dimensional system:
 - 1) yielded qualitative insight in the difference in time scales (onset and washout of treatment effects),
 - 2) brought down the number of parameters to be identified while maintaining the dynamic properties of the full Lemaire model
- Provides a tool for developing mechanism-based disease systems models, which can be applied to clinical data

Post (2009) Ph.D. thesis at Leiden University.

Hong et al. (2011) abstract at ACoP.

Acknowledgements

Teun M. Post Lambertus A. Peletier

Meindert Danhof Oscar Della Pasqua

Massoud A. Boroujerdi Rik de Greef Thomas Kerbusch

Mechanism-based PK/PD modeling platform (project number D2-104)

